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I. Phys. A: Math.  Gen .  22 (1989) 5281-5290. Printed in the UK 

Corrections to maximum entropy formalism for steady 
heat conduction 

R E Nettleton 
Department of Physics, University of Witwatersrand, Johannesburg, South Africa 

Received 2 May 1989 

Abstract. Corrections to the maximum entropy formalism for heat conduction in a dense 
fluid can be made  to ensure that the heat flux, J,  is calculated in a mass-centre-fixed frame 
and  to take into account the density gradient T n  which builds up  in a steady state. The 
first correction effects only O ( J 6 )  in the free energy, F. The second correction yields 
O([Tn]') in F which, in P = - d F / d V  for a hard-sphere model, dominates the O(J'l term, 
calculated in earlier work, in a steady state. The maximum entropy formalism, when 
applied to an  experimental problem, must maximise the entropy functional subject t o  all 
conditions implicit in that  problem if quantiative predictions are  to be made.  

1. Introduction 

In a previous work (Nettleton 1988) the formalism developed by Jou et a1 (1984) was 
applied to calculate the dependence of the free energy and pressure of a dense fluid 
on the square of the heat flux, which is a state variable in the framework of extended 
non-equilibrium thermodynamics. The method determines a phase-space distribution, 
p ( x ) ,  which maximises the information-theoretic entropy 

(1) 

subject to the condition that the internal energy E and heat flux J, calculated from 
p ( x ) ,  have specified values. In  the case of dense hard spheres, the O ( J z )  terms in the 
thermodynamic functions were found to be negligibly small for a reasonable rate of 
heat flow, in agreement with an earlier work (Nettleton 1987) which calculated the 
same terms by applying reciprocity, in the context of extended non-equilibrium thermo- 
dynamics, to a kinetic equation for dJ /d t  derived from the Liouville equation. 
Nevertheless, systematic differences between the two treatments were observed. 
Specifically, the O ( J 2 )  term in the pressure calculated from the maximum entropy 
formalism was two orders of magnitude smaller than the same term calculated via 
reciprocity. This discrepancy may be related to the fact that the approach utilising 
reciprocity applied a mechanical stability condition neglected in the more recent work 
(Nettleton 1988). We shall proceed here to show that if thermodynamic potentials for 
a particular physical situation are to be derived by maximising S given by equation 
(11, then the subsidiary conditions must include all the information implicit in the 
experiment to be analysed, including mechanical stability when one is dealing with a 
steady state. 
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There are two items of physical information which have been omitted in earlier 
applications (Jou er a1 1984, Nettleton 1988) of the maximum entropy formalism to 
heat conduction. The first of these is tha: the calculation must be done in a frame in 
which the mass centre is fixed. Thus if P is the total momentum, we have 

p 6  d x  = O  ( 2 )  I 
as an  additional condition to be applied in maximising the information-theoretic S. 
Application of a large temperature gradient causes the centre of mass initially to move, 
and  we wish to determine the lowest order in the J dependence of F which is affected 
if we calculate all quantities in a centre-of-mass-fixed frame. The second item of 
information we must include in maximising S is the presence of a density gradient in 
the steady state. For such a state to exist, the pressure must be uniform across the 
system, and  so a density gradient builds up  until, in hard spheres where Po is propor- 
tional to T, 

On = - Ponp,T- 'V T p,  = n - ' ( a n / a p ) ,  (3) 
where Po(n, t )  is the equilibrium equation of state. Given that a density gradient is 
present, we conclude that if A is an operator whose average value is dnldx,  assuming 
O n  is in the x direction, we get 

a = dn /ax  = 1 p."i d x  (4) 

as an  additional subsidiary condition to be applied in maximising S. 
The addition of the state variable a implies that F, and the pressure P = -aF/a V, 

will have contributions O( a') in addition to the O ( J 2 )  terms previously considered 
(Jou et a1 1984, Nettleton 1988). In a steady state, since O T =  - J / A ,  where A is the 
thermal conductivity, equation (3) yields 

( 5 )  
and so F and P will have two terms proportional to J 2  whose relative magnitudes we 
can compare for the case of dense hard spheres. While both contributions remain 
unobservably small, the O ( a z )  terms in P dominate the O ( J 2 )  terms. This points up  
the fact that the density gradient is a state variable whose relaxation toward a steady 
state is coupled to the heat flow (Nettleton 1961), and  an  information-theoretic 
approach to states far from equilibrium must take it, and any other information pertinent 
to a particular experiment, into account. 

In the following section, we shall examine the maximisation of S, given by equation 
( l ) ,  subject to condition ( 2 )  among others. This serves to establish very generally that 
condition ( 2 )  does not affect the computation of the first two terms in the J dependence 
of F and functions such as pressure P derivable from it. In  section 3, we discuss the 
model and define the operator A in equation (4). By maximising the information- 
theoretic S subject to (4), we relate the O ( a ' )  term in F to the equilibrium correlation 
(AA),. The latter can be evaluated in terms of the equilibrium radial distribution 
function, g ( r ) ,  and numerical details for dense hard spheres are worked out in section 
4, based on the Percus-Yevick equation for g ( r ) .  There we compare the relative 
magnitudes in the steady state of the O(a ' )  and O(J ' )  terms in P and  conclude that 
the density gradient must be taken into account in applying information theory to 
steady heat conduction. In section 5, these results will be summarised along with our  
general conclusions. 

a = Po@, ( A  T )  -'JY 
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2. Fixed centre-of-mass condition 

In this section, we examine the maximisation of the functional ( 1 )  subject to the 
conditions 

( 6 ~ )  

The system is taken to be a cube of side 1 = lo-' m immersed in a continuous liquid 
phase, as in earlier work (Nettleton 1987, 1988). This system is macroscopically small 
but large enough to associate with it a thermodynamic temperature T which varies 
from one cubic cell to another, producing the*macroscopic temperature gradient. The 
heat flux operator, 3, and total momentum, P, are given by 

I 

where h is the enthalpy per particle, d the pair potential, and the sums are over the 
N particles in the system. F,, is the force on the particle at r,  arising from its interaction 
with the particle j at r,, with r,, = r, - r,  and S is the Kronecker delta. 

The solution of the variational problem of maximising (1) subject to ( 6 a - c )  is: 

p = z - ' e x p ( - - p f i -  y . 3 - v . F )  (8) 
where Z normalises p to unity, and p, y,  and v are Lagrange multipliers. Jou er a1 
(1984)  have shown that p = (KT) I ,  where T is the thermodynamic temperature. If 
we substitute (8)  back into ( 1 )  and calculate F = E - TS, using ( 6 a ) ,  we find the 
thermodynamic force 

Q, = - ~ F / J J  = p - '  y. ( 9 )  
Q, and v can be found in the form of expansions in powers of J from the consistency 
conditions (66 ,  c )  written in the form: 

J = Z - I  j exp(-Pf l  -pa . j - - v .  P )  d x  ( l o a )  

( l o b )  

1 
f i  exp( -pA - p Q, - v - F )  dx. 

We can put 

in ( l o b )  and solve for p l ,  p3 by equating to zero the coefficient of each power of a. 
Substitution of the result into ( l o a )  permits us to obtain, in a similar fashion, an  
expansion of Q, in powers of J .  The maximum entropy formalism thus provides a way 
of using the consistency conditions to calculate the forces in extended thermodynamics 
as expansions in powers of the corresponding state variable. Equation ( 9 )  ensures 
that the result is consistent with the Gibbs equation. 
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When we expand ( l o b )  in powers of @ and U, we can utilise, with zero subscript 
denoting an equilibrium canonical average, 

( ( v s  f i )2 )o= u’NmKT (120) 

= 0. (12b) 

The last result follows from the definition of h. Equation ( l o b )  reduces to: 

N W ~ T + ~ ( ~ ~ ( Q ,  - 3 ) 3 ) o p 3  = o  (13) 

so that Y = O(Q’). 
Taking into account (12b), we see that v contributes to (12a)  terms of order higher 

than three in @. Therefore, it will not affect the calculation of Q, to terms O(J’J)  or 
F to O(J4).  The earlier calculations of these terms (Jou et a1 1984, Nettleton 1988) 
are not changed, although condition ( l o b )  may affect the calculation of terms of still 
higher order. The latter, however, are expected to be very small, which is true of the 
O ( J 2 J )  terms already estimated. 

3. Dependence of free energy on the density gradient 

When a fluid is divided up into macroscopically small cells having each a volume of 
1 p m 3  and the ‘system’ is taken to be one of these cells, there are two density gradients 
relevant to such a description. In defining one of these gradients, we introduce a 
continuous function f i ( r )  which agrees at the centre of each cell with the mean density 
Nlr3 in the cell. This is similar to the introduction of a continuously varying thermo- 
dynamic temperature T( r ) .  The functions i i( r )  and T (  r )  characterise phenomena 
having wavelengths much greater than 1. Alternatively v ( r l )  = N p d r 2 .  . . dr, is a 
local density which varies from place to place in the interior of a cell. The average 
value of V , u ( r ) ,  taken over the volume /3, is a density gradient which describes the 
internal state of the fluid and which need not equal Vii. 

So long as we are concerned only with the description of phenomena whose 
associated wavelengths are much greater than 1, we need not distinguish between the 
macroscopic and average microscopic Tn. We shall suppose that V n  is in the x direction 
and that a = a n / a x  is an  internal state variable which appears in F and the thermo- 
dynamic potentials. Under these circumstances, we have Gibbs equation, equivalent to 

d F =  - S  d T -  P d V -  X d a  -@ * dJ.  (14) 
X ,  in first approximation, is proportional to a, and we can calculate it much as we 
can calculate Q from (6b). Once we have X ,  we can find the O ( a 2 )  term in F from 
d F l a a  = - X ,  as demonstrated in earlier work (Nettleton 1961) based on (14) and a 
kinetic equation linking d. to the heat flux. The latter work set up the general extended 
thermodyanamics incorporating the density gradient as a relaxing state variable. 

To apply the maximum entropy formalism to the calculation of X ,  we require an  a consistent with (4). To set u p  such an operator, observe that the Fourier k transform 
of the local density is: 

n* (k )=Cexp( ik .  r , ) .  (15)  
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The average of the density gradient operator taken over a cell of volume l 3  is 

a =  I - ' [n*(x=tl)-n^(x=-t l ) ]  

= l - ' ( 2 ~ ) - ~  exp(ik. r,)[exp(-ikxl/2) -exp(ik,l/2)] dk. (16) 5 ,  
In calculating the integral in (16), we shall introduce the stipulation that, in the x 
direction, we are interested only in wavelengths greater than 1. Structural variations 
of smaller wavelength are associated with very short-wavelength hypersound which 
governs the kinetics of structural relaxation. It produces local expansions of diameter 
having the order of the intermolecular separation which permit self-diffusion and 
molecular rearrangement. In the y and z direction, there is no macroscopic structural 
variation, and so there is no physical reason to restrict k, and k, in (16). Accordingly, 
the domain of the k integration in (16) is: 

2rr -7 rr -rr rr 
I U U U U 

- S  k, S -  - S  k 2 -  <-. (17) s-- 

U is the effective hard-core diameter, anticipating the application to hard spheres in 
the next section. There should be no structural wavelengths less than 2u, the smallest 
intermolecular separation. Equation (17) is a sufficient condition for F and X to be 
extensive, i.e. proportional to 13. 

By analogy with (8), we write down the expression for p, given by maximising S,  
in the form 

Drawing on the result of section 2 which carries over to the situation considered here, 
we have not introduced p. Inserting this result into (4) and expanding in powers of 
X ,  we have 

a = -pZ;' exp( - p k ) A a X  d x  + 0 ( X 3 ) .  I 
Thus 

where subscript zero denotes an equilibrium canonical average. 
Using (16), we can write 

(AA), = [12 (2~)6ZO]- '  exp(-pf i )  d x  dk dk' J 
x [exp(fik,l) -exp(-{ik,l)] 

x[exp(f ikl l ) -exp(-$k:l)]  x e x p [ i ( k + k ' )  r , ] x e x p [ i k ' .  (r,-r,)] 
, J 

(21) 
where the limits on k and k' are given in (17). 
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To simplify (21) ,  consider separately the N terms in which i = j  and the N (  N - 1) 
terms where i Zj. Typically, we can set i = 1, j = 2. Equation (21) becomes 

(AA),= -[12(27r)6]-1 dk dk'  sin(fk,l) sin(fk:l) 

3 

x n (2 sin[i(k, + k : ) l ] ( k ,  + k : ) - ' }  g ( r )  exp(ik' r )  d r  
r = i  

where g ( r )  is the radial distribution function. In the first term in the square bracket, 
we have two factors, equal to 

2(k, + k ; ) - '  [sin(k, + k:)l/2] dk, dk:  I:: 
We have introduced new coordinates, E =  k + k' and I? k - k' and have extended the 
range of integration to infinity because U is small. The third factor in the first term is 

dk, dk: sin(fk,l) sin(ik:l)[2/( k, + k : ) ]  sin[i(kr + k:)l] J::::, I::::, 
= -471-I Si(47r) -21-' C i n ( 4 r )  (24) 

which is achieved by introducing the same change of integration variable as in (23). 
The function Cin is defined by Abramowitz and Stegun (1964, p 231). 

When we examine the term in (22) involving g (  r ) ,  we find the integrals correspond- 
ing to (23) have the form: 

2 [ T ' u  dk, dk:(k, + k\)- '  sin[i(k, + k:)l] exp(ik',r,) 

= 2  F - ' s in ( f l l )  exp(ik{r,)  dk{ d E  

-7r/u -=/U 

2n'w E + r r / c r  

-27 r /v  1- 7r/ LT 

27r/<7 

= 4  5 E-' sin(fEl)r;' exp(iEr,) s in(Tr , /u)  dE=47r26(r , ) .  (25) 
- 2 v f "  

Equation (25) holds as well for the z component of the k integration. We have let 
U +  0 as is done above where this leads to a finite result. A consequence of this is that 
the r integration in (22) reduces to an integral over rx. The remaining integration over 
k, and k: is the same as in (23) and (24), since the factor exp(ik:r,) can be set equal 
to unity, except for a very small shape-dependent correction. 

The final result is: 

Since the system is immersed in an infinite fluid, the appropriate g ( r )  corresponds to 
an infinite system. The r integration has been extended to infinity, since the integral 
converges for k' f 0, and this extension eschews finite-size effects which are artifacts 
of the cellular coarse graining. The approximate numerical evaluation of the integral 
in (26) will be discussed in section 4, using an exact solution to the hard-sphere 
Percus-Yevick equation for g ( r ) .  There we shall compare the magnitudes in the steady 
state of the O ( a 2 )  and O(J ' )  terms in P. 
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4. Numerical estimates for dense hard spheres 

Since our objective is to compare the O(cy') term in P calculated here with the O ( J 2 )  
term obtained previously (Nettleton 1988), in a steady state where cy and J ,  are 
proportional, we choose the same model as before. This is a hard sphere fluid with 
nu3 = 0.8. U = 3.64 x lo-'" m is an effective sphere diameter for Ar (Hirschfelder et a1 
1954, p 545) and T = 87 K is in the liquid density range for Ar at the pressure indicated 
in table 1. The density is below, but near, the gas-solid point for hard spheres, since 
in the approach (Nettleton 1987) which utilised reciprocity to evaluate the O(J ' )  
contribution to F, it was necessary for the liquid to be dense enough to be contained 
within the system boundary during one relaxation time for J. That was a sufficient 
condition for interaction across the boundary to be proportional to P. The macroscopi- 
cally small system for which we calculate F is a cube of side I = m containing 
N = 1.66x 10'" spheres. For the equation of state P,(n, TI ,  we use the expression 
obtained by Ree and Hoover (1964) by fitting a Pad6 approximant to computer results. 

Table 1. Number density n at temperature T for hard spheres of diameter U in cell of 
side I at  pressure Po. p,  is the isothermal compressibility, A the thermal conductivity, c, 
( i  = I ,  2 , 3  1 a n d  '7 a n d  the parameters in equations ( 2 7 c - , f i .  FYI' denotes  the coefficient 

equation (5) is substi tuted for CI in ?!"'a'.  r'k"' , Pr, is the ratio to P,, of the coeficient of 
J' in P obtained by applying the maximum entropy formalism and  treating J as  the only 
relaxing state variable. !vi"' is the coefficient of CY' in F. 

of i n  p, while pi","= P ,  - i t )  ( P , n P , / A T ) '  is the coefficient of J' mhich results when 

8.7 
0.8 
3.64 I O - ' "  
1.00 ' 
1.54 10' 
1.86.  IO- '  
9 .60.  I O - '  

-29.6 
32.2 
-6.20 

0.419 
1.51 IOh' 
6.44 IO-'' 
2.08 IO-'' 
1.35 ' 

7.93 ' 
-9 .27 .  10-2: 

K 

In the case of hard spheres, the Percus-Yevick approximate equation for g i r )  
(McQuarrie 1976, p 276)  has proved successful at liquid densities (Gray and Gubbins 
1984, p 345), and we have utilised (Nettleton 1987, 1988) the exact solution thereto 
discussed by Wertheim (1963) and Thiele (1963). We propose to use this solution here 
to evaluate [g( r )  - 11 dr. We cannot use the tabulated values of g ( r )  given, for 
example, by Throop and  Bearman (1965) because the table is truncated and  does not 
extend to sufficiently large r. Instead, we start with the Fourier k transform of the 
Ornstein-Zernike equation 

h(  k )  = c (  k)/[ 1 - nc( k ) ]  
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where h ( r )  = g ( r ) -  1, and  c ( r )  is the direct correlation function for which the 
Wertheim-Thiele solution gives an  analytic expression (Gray and  Gubbins 1984, p 345) 

c ( r ) =  c , + c , ( r / u ) + ~ , ( r / u ) ~  r < u  (27a) 

c(  r )  = 0 r > u  (27b) 

C O =  -( 1 + 277)2/( 1 - ?-/)4 (27c) 

~ ,=677(1++77)~ / (1 -77)~  (27d)  

From (27a-e) c ( k )  is readily calculated. 
The result for c ( k )  can be used in (27) which in turn can be introduced into 

h( r )= ; r r -*  h(k)kr-l  sin(kr) dk. (28) 

From (28), we conclude that 

JOx h( r )  d r =  (477-l 

With z = ak,  and 

~ ( Z ) = Z - ~ { C ~ ( S ~ I I  z - z  cos z ) + c , z - ' [ ~ ( z  sin z + c o s z - 1 ) - z 2 c o s  21 

+ C ~ Z - ~ [ C O S  z( 12z' - z4- 24) +sin z(4z' - 24z) + 24]} (30) 
we have 

lor h ( k ) k  d k = 4 n u  lox d z 4 ( ~ ) [ 1 - 4 n n u ' ~ ( z ) ] - ' .  (31) 

We thus express the integral of h(  r )  in a form whose integrand is a well defined analytic 
function, rather than a truncated table, although, unfortunately, the integrand in (31) 
decays very slowly with increasing z. The integral is estimated here by using 48-point 
Gaussian quadrature in the range 0 S z S 100 and  by approximating the integral over 
the range 100 6 z S CO through keeping only the dominant term, -Ci( 100). The resulting 
value of (AA)o and the coefficient 

K T /  ( AA)O (32) J 3 

are listed in table 1 for the values of n, a, T, c i ,  and 7) listed there. 
If we write 

P = Po( n, T )  + FY'a' (33) 
then from (26) and (32) we have 

F Y I =  -+(d/av)v:"' 

loX h ( r )  d r - 2 n 3  / : y d r ) ]  (34) 
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The only term whose calculation has not been discussed is the integral of ag( r ) /an .  
This has the form 

$ ( z ) =  n a 4 ( z ) / a n .  ( 3 5 6 )  

6 can be calculated by finding the n-derivatives of (27c-e). The z integration is then 
approximated as in (31) by 48-point Gaussian quadrature for the range 0 s  z 100 
and by a(d/dn)(c,+ c, + c,)Ci( 100) for the contribution from the range z > 100. 

On inspecting the results in table 1, we see that, in a steady state with cy proportional 
to J , ,  the ratio F2cyz /PoJz= ~ \ " ~ " / P ,  has the opposite sign and is two orders of 
magnitude larger than the corresponding ratio Pi"/P,, of the coefficient of J' to Po, 
calculated without taking cy into account. This does not change the conclusion 
(Nettleton 1987, 1988) that in a computer simulation of hard spheres subject to a large 
temperature gradient we are unlikely to see contributions O(1V TI') in P and the thermal 
conductivity A. It shows, however, that care must be taken when using the maximum 
entropy formalism to include all relevant information among the subsidiary conditions 
applied in maximising the information-theoretic S. Otherwise, quantitative predictions 
cannot be made. 

4. Summary and discussion 

Given a set of internal state variables, N, V, T, J,  a, the maximum entropy formalism 
(Jaynes 1957a, b )  is designed to make the best estimate of S consistent with the 
prescription that these variables have specified values, given e.g. by (4 )  and ( 6 b ) .  To 
maximise (1)  subject to these specifications, one introduces Lagrange multipliers which 
were shown by Jou et a l  (1984) to be proportional to the thermodynamic forces. Such 
a proportionality assures consistency between the information-theoretic S and the 
Gibbs equation. The result is the non-equilibrium phase-space distribution (18). 

In earlier treatments (Jou et a1 1984, Nettleton 1988) the maximum entropy formal- 
ism was applied to heat conduction, with J the only non-equilibrium state variable. 
We observe here, however, that under a large temperature gradient the mass centre of 
the fluid will move until a density gradient builds up, satisfying the mechanical 
equilibrium condition V P = 0. Therefore in the steady state an additional condition 
must be adduced in maximising S ,  namely that V n  have the value calculated from this 
condition. An additional possible correction was considered, namely that J must be 
calculated in a frame in which the mass centre is at rest, but this condition does not 
affect terms in F out to O(J4).  

The circumstance that On appears in our treatment of the steady state reflects the 
fact that, in the neighbourhood of a steady state far from equilibrium, Vn and J are 
both relaxing state variables obeying coupled equations of motion (Nettleton 1961). 
In an extended non-equilibrium thermodyanmic treatment (Nettleton 1987) with J as 
the only relaxing variable, V n  was set proportional to GT and both were held constant, 
which may be valid very near a steady state, but not in general. If a n l a x  = a is a state 
variable, then F = Fo+4vI"'a'+. . . , and X = - a F / d a  = -vi"'cy is a thermodynamic 
force. We can calculate vi"' from the consistency condition (19), as is done in section 
3, with numerical evaluation in section 4 for a hard-sphere model of liquid Ar at 87 K. 
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This permits a comparison of the relative magnitudes of the O( a ' )  and O(J2) contribu- 
tions to thermodynamic functions such as P. These terms are unobservably small in 
realisable steady states, but the O( a ' )  contribution to P actually dominates. 

We see from this result that the maximum entropy formalism offers a deceptive 
simplicity. One must take care in any problem to maximise the functional in (1) subject 
to all the conditions implicit in the experimental situation one seeks to analyse. Both 
the theory which applies reciprocity to a kinetic equation for J treated as the only 
relaxing variable (Nettleton 1987) and the maximum entropy result for the same case 
(Nettleton 1988) yield results for p2 differing in sign and  magnitude from those obtained 
in the present paper. They serve only to make a qualitative prediction that nonlinear 
effects are expected to be small in liquids at high density. 

We d o  not find any a' term in the internal energy, E, unlike the situation with 
regard to J where E has a contribution O(J ' ) .  To see this, calculate 

(36) 
Since (ad), depends only on n, X is proportional to T, and a E / a a  vanishes. Also, 
since E = N ( 3 / 2 ) ~ 0  for hard spheres, where 8 is the local equilibrium temperature, 
we conclude that T -  8 does not have an  O(CY') contribution. We have not attempted 
to calculate O( a')  in X ,  despite the fact that O ( J 3 )  was considered previously (Nettleton 
1988). In  principle, these higher terms can be extracted from (19). The result involves 
the distribution function g, which must be known accurately, since there is a near 
cancellation of contributions of opposite sign. We were able previously (Nettleton 
1988) to estimate O(J4) contributions to F by invoking fluctuation theory, but this is 
hard to justify here because Cn is not a fast variable. This raises questions about the 
use of a generalised Einstein fluctuation distribution in attempting to calculate correla- 
tions such as (AAAA)" . 

The 0(cy7) term in F has applications beyond the field of heat transport. It can 
be  used (Cahn and Hilliard 1958) in  determining the density profile across a liquid- 
vapour interface. The results of section 3 can be carried over to this case, with the 
minimum k = ~ 1 8 ,  for 6 the intermolecular separation, and g( 1.) calculated numerically 
for a soft potential. Such a result can be compared with earlier work (Nettleton 1961) 
which calculated the O( a')  in F by applying reciprocity to the kinetic equations linking 
ci to the relaxation equations for the hypersound and  self-diffusion components of J. 

J E l J a  = TaS/aa - X = T d X / a T -  X .  

A * * *  
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